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Abstract

The taskof inferring a setofclassesand class
descriptionsmost likelyto explaina given
data set can be placedon a firm theoretical
foundationusing Bayesianstatistics.Within
thisframework,and usingvariousmathemat-
icaland algorithmicapproximations,the Au-
toClasssystem searchesfor the most proba-
ble classifications,automaticallychoosingthe
number ofclassesand complexityofclassde-
scriptions.A simplerversionofAutoClasshas
been applied to many large real data sets, have
discovered new independently-verified phenom-
ena, and have been released as a robust soft-
ware package. Recent extensions allow at-
tributes to be selectively correlated within par-
ticular classes, and allow classes to inherit, or
share, model parameters though a class hierar-
chy. In this paper we summarize the mathe-
matical foundations of Autoclass.

1 Introduction

The task of supervised classification - i.e., learning to pre-
dict class memberships of test cases given labeled train-
ing cases - is a familiar machine learning problem. A re-
lated problem is _msupervised classification, where train-
ing cases are also unlabeled. Here one tries to predict all
features of new cases; the best classification is the least
"surprised" by new cases. This type of classification,
related to clustering, is often very useful in exploratory
data analysis, where one has few preconceptions about
what structures new data may hold.

We have previously developed and reported on Au-
toClass [Cheeseman et al., 1988a; Cheeseman et al.,
1988b], an unsupervised classification system based on
Bayesian theory. Rather than just partitioning cases,
as most clustering techniques do, the Bayesian approach
searches in a model space for the "best" class descrip-
tions. A best classification optimally trades off predic-
tive accuracy against the complexity of the classes, and
so does not "overfit" the data. Such classes are also
"fuzzy"; instead of each case being assigned to a class, a
case has a probability of being a member of each of the
different classes.
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Autoclass III, the most recent released version, com-
bines real and discrete data, allows some data to be miss-
ing, and automatically chooses the number of classes
from first principles. Extensive testing has indicated
that it generally produces significant and useful results,
but is primarily limited by the simplicity of the mod-
els it uses, rather than, for example, inadequate search
heuristics. AutoClass III assumes that all attributes are
relevant, that they are independent of each other within
each class, and that classes are mutually exclusive. Re-
cent extensions, embodied in Autoclass IV, let us relax
two of these assumptions, allowing attributes to be se-
lectively correlated and to have more or less relevance
via a class hierarchy.

This paper summarizes the mathematical foundations
of AutoClass, beginning with the Bayesian theory of
learning, and then applying it to increasingly complex
classification problems, from various single class mod-
els up to hierarchical class mixtures. For each problem,
we describe our assumptions in words and mathematics,
and then give the resulting evaluation and estimation
functions for comparing models and making predictions.
The derivations of these results from these assumptions,
however, are not given.

2 Bayesian Learning

Bayesian theory gives a mathematical calculus of degrees
of belief, describing what it means for beliefs to be con-
sistent and how they should change with evidence. This
section briefly reviews that theory, describes an approach
to making it tractable, and comments on the resulting
tradeoffs. In general, a Bayesian agent uses a single real
number to describe its degree of belief in each proposition
of interest. This assumption, together with some other
assumptions about how evidence should affect beliefs,
leads to the standard probability axioms. This result
was originally proved by Cox [Cox, 1946] and has been
reformulated for an AI audience [Heckerman, 1990]. We
now describe this theory.

2.1 Theory

Let E denote some evidence that is known or could po-

tentially be known to an agent; let H denote a hypothe-

sis specifying that the world is in some particular state;

and let the sets of possible evidence E and possible states

of the world H each be mutually exclusive and exhaus-

tive sets. For example, if we had a coin that might be



two-headed the possible states of the world might be
"ordinary coin", "two-headed coin". If we were to toss
it once the possible evidence would be "lands heads",
"lands tails".

In general, P(ab]cd) denotes a real number describing
an agent's degree of belief in the conjunction of proposi-
tions a and b, conditional on the assumption that propo-
sitions c and d are true. The propositions on either side

of the conditioning bar "I" can be arbitrary Boolean ex-
pressions. More specifically, lr(H) is a "prior" describing
the agent's belief in H before, or in the absence of, see-

ing evidence E, _r(HIE) is a "posterior" describing the
agent's belief after observing some particular evidence
E, and L(E]H) is a "likelihood" embodying the agent's
theory of how likely it would be to see each possible ev-
idence combination E in each possible world H.

To be consistent, beliefs must be non-negative, 0 __
P(alb ) __ 1, and normalized, so that _H It(H) = 1 and
_E L(E[H) = 1. That is, the agent is sure that the
world is in some state and that some evidence will be

observed. The likelihood and the prior together give a
"joint" probability J(EH) =_ L(E[H)_(H) of both E
and H. Normalizing the joint gives Bayes' rule, which
tells how beliefs should change with evidence;

J(EH) L(EIH)_(H)

_(mE) = X:x _(EH) = _H L(EIX)_(_)"

When the set of possible Hs is continuous, the prior
_(H) becomes a differential d_r(H), and the sums over
H are replaced by integrals. Similarly, continuous Es
have a differential likelihood dL(EIH), though any real
evidence AE will have a finite probability AL(EIH ) _.

dL(EIH)_.
In theory, all an agent needs to do in any given situ-

ation is to choose a set of states H, an associated like-
lihood function describing what evidence is expected to
be observed in those states, a set of prior expectations
on the states, and then collect some relevant evidence.
Bayes' rule then specifies the appropriate posterior be-
liefs about the state of the world, which can be used to
answer most questions of interest. An agent can combine

these posterior beliefs with its utility over states U(H),
which says how much it prefers each possible state, to
choose an action A which maximizes its expected utility

EU(A) = _ U(H),_(mEA).
H

2.2 Practice

In practice this theory can be difficult to apply, as the
sums and integrals involved are often mathematically in-
tractable. So one must use approximations. Here is our
approach.

Rather than consider all possible s_a_es of the world,
we focus on some smaller space of models, and do all

of our analysis conditional on an assumption S that the
world really is described by one of the models in our
space. As with most modeling, this assumption is almost
certainly false, but it makes the analysis tractable. With

time and effort we can make our models more complex,
expanding our model space in order to reduce the effect
of this simplification.

The parameters which specify a particular model are

split into two sets. First, a set of discrete parameters T
describe the general form of the model, usually by spec-
ifying some functional form for the likelihood function.
For example, T might specify whether two variables are
correlated or not, or how many classes are present in a
classification. Second, free variables in this general form,
such as the magnitude of the correlation or the relative
sizes of the classes, constitute the remaining continuous
model parameters V.

We generally prefer a likelihood* L(E[VTS) which is
mathematically simple and yet still embodies the kinds
of complexity we believe to be relevant.

Similarly, we prefer a simple prior distribution

d_r(VT[S) over this model space, allowing the result-
ing V integrals, described below, to be at least approx-
imated. A prior that predicts the different parameters
in V independently, through a product of terms for each

different parameter, often helps. We also prefer the prior
to be as broad and uninformative as possible, so our soft-
ware can be used in many different problem contexts,

though in principal we could add specific domain knowl-
edge through an appropriate prior. Finally we prefer a
prior that gives nearly equal weight to different levels
of model complexity, resulting in a "significance test".
Adding more parameters to a model then induces a cost,
which must be paid for by a significantly better fit to the
data before the more complex model is preferred.

Sometimes the integrable priors are not broad enough,
containing meta_parameters which specify some part of

model space to focus on, even though we have no prior
expectations about where to focus. In these cases we
"cheat" and use simple statistics collected from the evi-
dence we are going to use, to help set these priors 2. For
example, see Sections 4.2, 4.5.

The joint can now be written as dJ(EVTIS ) =

L(E[VTS)d_(VTIS ) and, for a reasonably-complex
problem, is usually a very rugged distribution in VT,
with an immense number of sharp peaks distributed
widely over a huge high-dimensional space. Because of
this we despair of directly normalizing the joint, as re-
quired by Bayes' rule, or of communicating the detailed
shape of the posterior distribution.

Instead we break the continuous V space into regions
R surrounding each sharp peak, and search until we tire

for combinations RT for which the "marginal" joint

M (E RT[S) -- ...Irea dJ (EVT[S)

is as large as possible. The best few such "models" RT
are then reported, even though it is usually almost cer-
tain that more probable models remain to be found.

Each model RT is reported by describing its marginal
joint M(ERT[S), its discrete parameters T, and esti-
mates of typical values of V in the region R, like the
mean estimate of V:

_(VIERTS ) _ fw_R V dJ(EVT]S)
M(ERTIS)

, Note that when a variable like V sits in a probability ex-
pression where a proposition should be, it stands for a propo-
sition that the variable has a particular value.

"This is cheating because the prior is supposed to be in-
dependent of evidence.



or the V for which dJ(EVTIS ) is maximumin R. While
these estimates are not invariant under reparameteriza-
tions of the V space, and hence depend on the syntax

with which the likelihood was expressed, the peak is usu-
ally sharp enough that such differences don't matter.

Reporting only the best few models is usually justified,
since the models weaker than this are usually many or-
ders of magnitude less probable than the best one. The

main reason for reporting models other than the best is
to show the range of variation in the models, so that one
can judge how different the better, not yet found, models
might be.

The decision to stop searching for better models RT
than the current best can often be made in a principled
way by using estimates of how much longer it would
take to find a better model, and how much better than
model would be. If the fact that a data value is un-

known might be informative, one can model "unknown"

as just another possible (discrete) data value; otherwise
the likelihood for an unknown value is just a sum over
the possible known values.

To make predictions with these resulting models, a
reasonable approximation is to average the answer from
the best few peaks, weighted by the relative marginal
joints. Almost all of the weight is usually in the best
few, justifying the neglect of the rest.

2.3 Tradeoffs

Bayesian theory offers the advantages of being theoret-
ically well-founded and empirically well-tested [Berger,
1985]. It offers a clear procedure whereby one can almost
_turn the crank", modulo doing integrals and search, to
deal with any new problem. The machinery automati-
cally trades off the complexity of a model against its fit
to the evidence. Background knowledge can be included
in the input, and the output is a flexible mixture of sev-
eral different "answers," with a clear and well-founded
decision theory [Berger, 1985] to help one use that out-
put.

Disadvantages include being forced to be explicit
about the space of models one is searching in, though
this can be good discipline. One must deal with some
difficult integrals and sums, although there is a huge lit-
erature to help one here. And one must often search
large spaces, though most any technique will have to do
this and the joint probability provides a good local eval-
uation function. Finally, it is not clear how one can take
the computational cost of doing a Bayesian analysis into
account without a crippling infinite regress.

Some often perceived disadvantages of Bayesian anal-
ysis are really not problems in practice. Any ambiguities
in choosing a prior are generally not serious, since the

various possible convenient priors usually do not disagree
strongly within the regions of interest. Bayesian analysis
is not limited to what is traditionally considered "statis-
tical" data, but can be applied to any space of models
about how the world might be. For a general discussion
of these issues, see [Cheeseman, 1990].

We will now illustrate this general approach by apply-
ing it to the problem of unsupervised classification.

3 Model Spaces Overview

3.1 Conceptual Overview

In this paper we deal only with attribute-value, not re-
lational, data. 3 For example, medical cases might be
described by medical forms with a standard set of en-
tries or slots. Each slot could be filled only by elements
of some known set of simple values, like numbers, colors,
or blood-types. (In this paper, we will only deal with
real and discrete attributes.)

We would like to explain this data as consisting of a
number of classes, each of which corresponds to a dif-
fering underlying cause for the symptoms described on
the form. For example, different patients might fall into
classes corresponding to the different diseases they suffer
from.

To do a Bayesian analysis of this, we need to make
this vague notion more precise, choosing specific math-
ematical formulas which say how likely any particular
combination of evidence would be. A natural way to do
this is to say that there are a certain number of classes,
that a random patient has a certain probability to come
from each of them, and that the patients are distributed
independently - once we know all about the underlying
classes then learning about one patient doesn't help us
learn what any other patient will be like.

In addition, we need to describe how each class is dis-

tributed. We need a _single class" model saying how
likely any given evidence is, given that we know what
class the patient comes from. Thus we build the multi-
class model space from some other pre-existing model

space, which can be arbitrarily complex. (In fact, much
of this paper will be spend describing various single class
models.) In general, the more complex each class can be,
the less of a need there is to invoke multiple classes to
explain the variation in the data.

The simplest way to build a single-class model is to
predict each attribute independently, i.e., build it from
attribute-specific models. A class has a distribution for

each attribute and, if you know the class of a case, learn-
ing the values of one attribute doesn't help you predict
the value of any other attributes. For real attributes one
can use a standard normal distribution, characterized
by some specific mean and a variance around that mean.
For discrete attributes one can use the standard multino-

mial distribution, characterized by a specific probability
for each possible discrete value.

Up to this point we have described the model space of
Autoclass III. Autoclass IV goes beyond this by intro-
ducing correlation and inheritance. Correlation is intro-

duced by removing the assumption that attributes are
independent within each class. The simplest way to do
this is to let all real attributes covary, and let all discrete
attributes covary. The standard way for real attributes
to covary is the multivariate normal, which basically says
that there is some other set of attributes one could de-

fine, as linear combinations of the attributes given, which
vary independently according to normal distributions. A
simple way to let discrete attributes covary is to define
one super-attribute whose possible values are all possible

3Nothing in principle prevents a Bayesian analysis of more
complex model spaces that predict relational data.



combinations of the valuesof the attributesgiven.

Ifthere are many attributes,the above ways to add

correlationintroduce a great many parameters in the

models, making them very complex and, under the usual

priors,much lesspreferablethan simpler independent

models. What we reallywant are simpler models which

only allow partialcovariance. About the simplest way

to do thisisto say that,fora given class,the attributes

clump together in blocks of inter-relatedattributes.All

the attributesina block covary with each other,but not
with the attributesin other blocks. Thus we can build

a block model space from the covariantmodel spaces.

Even thissimpler form of covarianceintroducesmore

parameters that the independent case, and when each
class must have its own set of parameters, multiple

classesare penalized more strongly. Attributes which
are irrelevantto the whole classification,likea medi-

cal patient'sfavoritecolor,can be particularlycostly.
To reduce this cost,one can allow classesto share the

specificationofparameters associatedwith some of their

independent blocks. Irrelevantattributescan then be

shared by allclassesat a minimum cost.

Rather than allow arbitrarycombinations of classes

to share blocks,itissimpler to organize the classesas

leavesofa tree.Each block can be placed at some node

in this tree,to be shared by allthe leavesbelow that

node. In thisway differentattributescan be explained

at differentlevelsof an abstractionhierarchy.For med-

icalpatientsthe tree might have "viralinfections"near

the root,predictingfevers,and some more specificviral
diseasenear the leaves,predictingmore diseasespecific

symptoms. Irrelevantattributeslikefavorite-colorwould

go at the root.

3.2 Notation Summary

For allthe models to be considered in thispaper, the

evidence E willconsistof a set of I cases,an associated

set/C of attributes,ofsize4 K, and case attributevalues

Xik, which can include "unknown." For example, medi-

cal case number 8,described as (age - 23,blood-type =

A,...), would have Xs,, = 23, Xs,2 = A, etc.
In the next two sections we will describe applications

of Bayesian learning theory to various kinds of mod-
els which could explain this evidence, beginning with
simple model spaces and building more complex spaces
from them. We begin with a single class. First, a sin-
gle attribute is considered, then multiple independent
attributes, then fully covariant attributes, and finally
selective covariance. In the next section we combine

these single classes into class mixtures. Table 1 gives
an overview of the various spaces.

For each space S we will describe the continuous
parameters V, any discrete model parameters T, nor-

malized likelihoods dL(E]VTS), and priors dr(VT[S).
Most spaces have no discrete parameters T, and only one

region R, allowing us to usually ignore these parameters.
Approximations to the resulting marginals M(ERTIS )
and estimates E(VIERTS ) will be given, but not de-
rived. These will often be given in terms of general func-
tions F, so that they may be reused later on. As ap-

4Note we use script letters like /C for sets, and matching
ordinary letters K to denote their size.

propriate, comments will be made about algorithms and
computational complexity. All of the likelihood func-
tions considered here assume the cases are independent,

i.e.,

L(E[VTS) = H L(E,[VTS)
i

so we need only give L(E_IVTS ) for each space, where
El = {Xil,X_2, Xis,...,X_K}.

4 Single Class Models

4.1 Single Discrete Attribute- SD1

A discrete attribute k a/lows only a finite number of pos-

sible values l 6 [1, 2 .... , L] for any X_. _Unknown" is usu-
ally treated here as just another possible value. A set of
independent coin tosses, for example, might have L - 3
with 11 = heads, 12 -- tails, and ls - _unknown'. We
make the assumption SD1 that there is only one discrete
attribute, and that the only parameters are the continu-
ous parameters V - ql... qr. consisting of the likelihoods

L(Xi[VSD1) -- qo=x,) for each possible value I. In the
coin example, ql - .7 would say that the coin was so
"unbalanced" that it has a 70 percent chance of coming
up heads each time.

There are only L- 1 free parameters since normal-

ization requires )-_s ql = 1. For this likelihood, all that
matters from the data are the number of cases with each

value 5 It = _'_i 6x_s. In the coin example, I1 would be
the number of heads. Such sums are called "sufficient

statistics" since they summarize all the information rel-
evant to a model.

We choose a prior

r(aL)
d (VlS ,)= IL)- r(a)'H q -Idq'

l

which for a > 0 isa specialcase of a beta distribu-
tion[Berger,1985] (r(y)isthe Gamma function [Spiegel,

1968]).This formula isparameterized by a,a Uhyperpa-
rameter" which can be set to differentvaluesto specify

differentpriors.Here we set a - 1/L. This simple prob-

lem has only one maximum, whose marginal isgiven by

r( L) l-I,r(I, +
M(EISDI) = FI(I1,...,IL,I,L) - r(aL +I)r(a) L

We have abstracted the function F1, so we can refer to it
later. The prior above was chosen because it has a form
similar to the likelihood (and is therefore a "conjugate"

prior), and to make the following mean estimate of qz
particularly simple

I,+a I,+_
E(q,IES._)= F_.(I,,L L) = _+ aL - I +-T

for a = 1/L. F2 is also abstracted out for use later.
Note that while F2(Iz, I, L) is very similar to the classical

estimate of _, F2 is defined even when I = 0. Using a
hash table, these results can be computed in order I
numerical steps, independent of L.

_Note that 6,v denotes 1 when u = v and 0 otherwise.



_p_ce

Sm
Sm
&
SD
SR

Sv

S_

Description V T
Single Discrete
Single Real
Independent Attrs

qi

#a
Vk

Covariant Discrete qhi_...
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NK' (I +
NKC(XKb+

Table 1: Model Spaces

4.2 Single Real Attribute - _R1

Real attribute values Xi specify a small range of the real
line, with a center zi and a precision, Azi, assumed to be
much smaller than other scales of interest. For example,
someone's weight might be measured as 70± 1 kilograms.
For scalar attributes, which can only be positive, like
weight, it is best to use the logarithm of that variable
[Aitchison and Brown, 1957].

For Sal, where there is only one real attribute, we
assume the standard normal distribution, where the suf-

ficient statistics are the data mean 5 - _ _-]_/zl, the ge-

ometric mean precision A% -- (IIi/ Azi)_ and the stan-

dard deviation s given by s 2 - -1._"_4(zl __)2. V consists
of a model mean p and devmhon a, and the likelihood
is given by the standard normal distribution.

dL( dVSR1)=
_/2_

For example, people's weight might be distributed with
a mean of 80 kilograms and a deviation of 15. Since
all real data have a finite width, we replace dz with
Az to approximate the likelihood AL(Xi[VSat) =

L,, dZ,( ,)VSR1) dL( ilVSR1).
As usual, we choose priors that treat the parameters

in V independently.

d_r(VISRx) = d_r(#lSm) dTr(alSm)

We choose a prior on the mean to be flat in the range of
the data,

d ( ISR ) = +,:)
where p+ = maxzi, p- = minxi, by using the general
uniform distribution

dydR(yly+,y-) - fory [y-,U+].
y+ -- y-

A flat prior is preferable because it is non-informative,
but note that in order to make it normalizable we must
cheat and use information from the data to cut it off at

some point. In the single attribute case, we can similarly
choose a flat prior in log(a).

dTr(alSRx) -- dR(log(a) llog( Ag ), log(rain Axi) ).

where A/_ = #+ - #-. The posterior again has just one
peak, so there is only one region R, and the resulting
marginal is

1
M(EISm)- 2 (_rI)½ lOg(AMminAzi) sX-XA#

Note that this joint is dimensionless. The estimates are

= and e(#IE) =simply 8(#[ESal) Com-

putationhere takes order I steps,used to compute the
sufficientstatistics.

4.3 Independent Attributes - Sz

We now introduce some notation for collecting sets of
indexed terms like Xit. A single such term inside a {}
will denote the set of all such indexed terms collected

across all of the indices, like i and k in E = {Xi_} =
{Xi_ such that i 6 [1,...,/],k 6 E). To collect across

only some of the indices we use [.J_ as in El = U_ Xi_ =
{Xit, Xi2,...}, all the evidence for a single case i.

The simplest way to deal with cases having multiple
attributesisto assume S_ that they are allindependent,

i.e.,treatingeach attributeas ifitwere a separate prob-

lem. In thiscase, the parameter set V partitionsinto

parameter sets Vt - Ul, q_ or _t,at], depending on

whether that k isdiscreteor real.The likelihood,prior,

and jointfor multipleattributesare allsimple products
of the resultsabove for one attribute:Si = SDi or SRt

-- i.e.,

IVS,)= H z,(xi IV,,Sd,

and

k

d_(V[Sx) - H d_(V_[Sl),
k

M(EISD "-"I-_J(E(k)[Sx)
k

where E(k) = _Ji xi_, all the evidence associated with
attribute k. The estimates 8(V_IESz) = E(V_,IE(k)St)
are exactly the same. Computation takes order IK steps
here.

4.4 Fully Covariant Discretes - SD

A model space SD which allows a set/C of discrete at-
tributes to fully covary (i.e, contribute to a likelihood in
non-trivial combinations) can be obtained by treating all
combinations of base attribute values as particular val-

ues of one super attribute, which then has L' = l'Ik L_
values -- so L' can be a very large number! V consists



of terms like qha2...zK, indexed by all the attributes. /z
generalizes to

II,i,...IK =EH_x,hl, •
i k

Given this transformation, the likelihoods, etc. look the
same as before:

L(E, [VSD) =

where each l_ = Xi_,

d_(VISD) -- dB({qh,2...,x} I L'),

M(E[SD) = Fx({/hi2...IK } ,I, L'),

and 6

IESD)= Z,L')

Computation takes order IK steps here. This model
could, for example, use a single combined hair-color eye-
color attribute to allow a correlation between people be-

ing blond and blue-eyed.

4.5 Fully Covariant Reals - SR

If we assume ..,cathat a set K of real-valued attributes
follow the multivariate normal distribution, we replace

the o'2 above with a model covariance matrix _k, and
s_ with a data covariance matrix

i _ _S k,= y
i

. The _]kk,must be symmetric, with ]Ukk, = ]Dk,k,

and "positivedefinite",satisfying_-_/_k,Yk_k/_,Yk,> 0
for any vector Yk. The likelihoodfor a set of attributes
K is 7

dL(mdvsa) = dN(Ei, {/_},{_kk,},K)

- ½_,('_-,_)_P;,('_,-,_')

= e H dz_
-- (29)÷ I_,t ½

is the multivariate normal in K dimensions.

As before, we choose a prior that takes the means to
be independent of each other, and independent of the
covariance

d_r(VlSR) = d_({_kk,} ISa) 1"I d_r(l_klSax) ,

so the estimates of the means remain the same,
E(t_IESa) = _k. We choose the prior on Ekk, to use
an inverse Wishart distribution [Mardia et al., 1979]

d_r({2_k_,} ISR) -- dW_-'({_kk,} I {Gk_,}, h) --

--h--K--I 1 K inv Ginv K

_FI d_,
[If ,_<,,

which is normalized (integrates to I) for h _ K and
_, symmetric positive definite. This is a "conju-
gate" prior, meaning that it makes the resulting poste-
rior d_r({E_w} IES_) take the same matlaematical form

SF, and F2 are defined on page 4.
rvi_v_._bdenotes the matrix inverse of ]C_b satisfying

_b_b_b_ = 6_¢, and I_bl denotes components of the ma-
trix determinant of {_,b}.

as the prior. This choice makes the resulting integrals

manageable, but requires us to choose an h and all the
components of G_,. We choose h - K to make the
prior as broad as possible, and for G_, we "cheat" and

choose G_, = S_$_, in order to avoid overly distorting
the resulting marginal

M(EIS_) = _K _ _ ]-[
l_-_r • [IS_, + G_,I _ -_- A_

and estimates

IS_, + G_, I + 6_,

If we choose G_k, too large it dominates the esti-
mates, and if G_, is too small the marginal is too small.
The compromise above should only over estimate the
marginal somewhat, since it in effect pretends to have

seen previous data which agrees with the data given.
Note that the estimates are undefined unless I > 2.

Computation here takes order (I + K)K _ steps. At
present, we lack a satisfactory way to approximate the
above marginal when some values are unknown.

4.6 Block Covariance- Sv

tL_ther than just having either full independence or full
dependence of attributes, we prefer a model space Sv
where some combinations of attributes may covary while
others remain independent. This allows us to avoid pay-
ing the cost of specifying covariance parameters when
they cannot buy us a significantly better fit to the data.

We partition the attributes/C into B blocks Kb, with
full covariance within each block and full independence
between blocks. Since we presently lack a model allowing
different types of attributes to eovary, all the attributes
in a block must be of the same type. Thus real and
discretes may not mutually covary.

We are away of other models of partial dependence,
such as the the trees of Chow and Lin described in [Pearl,
1988], but choose this approach because it includes the

limiting cases of full dependence and full independence.

The evidence E partitions block-wise into E(Kb) (us-
ing Ei(1C) - U_ex Xi_ and E(K) - {Ei(K)}), each with
its own sufficient statistics; and the parameters V parti-
tion into parameters Vb = {qhl_...tx} or [{E_,}, {p_}].
Each block is treated as a different problem, except that
we now also have discrete parameters T to specify which

attributes covary, by specifying B blocks and {/Cb} at-
tributes in each block. Thus the likelihood

B

L(E, IVTSv ) = II L(E,(]Cb)IVbSB)
b

is a simple product of block terms SB = SD or SR assum-
ing full covariance within each block, and the estimates
£(VbIETSv) = E(VbIE(]Cb)SB) are the same as before.

We choose a prior which predicts the block structure
B {Eb} independently of the parameters I_ within each
independent block

b



which results in a similarly decomposed marginal

M(ETISv ) = _:(B{/Cb}[Sv) H M(E(ICb)ISB).
b

We choose a block structure prior

_(B {r:b} ISV) = 1/KRZ(KR, BR)KDZ(KD, BD),

where /CR is the set of real attributes and BR is the

number of real blocks (and similarly for /CD and BD).
This says that it is equally likely that there will be one
or two or three, etc. blocks, and, given the number of

blocks, each possible way to group attributes is equally
likely. This is normalized using Z(A, U), given by

u (U - u + i)"4

Z(A,U)-- B(-1)u-i (U- u+ l)!(u- 1)!'
u=l

which gives the number of ways one can partitiona set

with A elements into U subsets. This priorprefersthe

specialcases of fullcovariance and fullindependence,

sincethere are fewer ways to make these block combi-

nations.For example, in comparing the hypothesis that

each attribute isin a separate block (i.e.,allindepen-
dent) with the hypothesis that only one particularpair

of attributescovary together in a block ofsizetwo, this

priorwillpenalize the covariance hypothesis in propor-

tion to the number of such pairs possible. Thus this

priorincludesa "significancetest",so that a covariance

hypothesis will only be chosen ifthe added fitto the

data from the extra covariance is enough to overcome
thispenalty.

Computation here takes order NK(l-ffbb+ K_) steps,
where N isthe number of searchtrialsdone beforequit-

ting,which would be around (K - 1)! for a complete

search of the space. K-'_is an average, over both the

search trialsand the attributes,ofthe block sizeofreal

attributes(and unity for discreteattributes).

5 Class Mixtures

5.1 Flat Mixtures - SM

The above model spaces Sc = Sv or St can be thought
of as describinga singleclass,and so can be extended

by consideringa space SM of simple mixtures of such

classes[D.M.Titterington e_ al.,1985]. Figure i shows

how thismodel, with Sc = SI, can fita set of artificial
real-valueddata infivedimensions.

In thismodel space the likelihood

C

, L(E_ [VTSM) = _ _cL(Ei IVcTcSc)
c

sums over products of "class weights" ac, that give the
probability that any case would belong to class c of the
C classes, and class likelihoods describing how members

of each class are distributed. In the limit of large C this
model space is general enough to be able to fit any dis-

tribution arbitrarily closely, and hence is "asymtotically
correct".

The parameters T = [C, {Tc}] and V = [{ac}, {Vc}]
combine parameters for each class and parameters de-
scribing the mixture. The prior is similarly broken down
as

dr(VTISM ) = Fa(C)Cl dB({ac} IV)H dTr(V_Tc]Sc)
c

i

::' ..

•
• . . ." ".

s ! (_, c [(l) (2) IS) (4) is) ,ill (2) (4) (5) Ill (2) (3) (4) (5)

Figure h AutoClass IIIFinds Three Classes

We plotattributes1 vs. 2,and 3 vs. 4 foran artificialdata
set.One o-deviationovalsaxe drawn around the centersof
the three classes.
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where Fs(C) - _ forC > 0 and isjust one arbitrary

choiceof a broad priorover integers.The a¢ istreated
as ifthe choice ofclasswere another discreteattribute,

except that a C! isadded because classesare not distin-

guishablea priori.

Except in very simple problems, the resultingjoint

dJ(EVTIS ) has many localmaxima, and so we must

now focus on regions R of the V space. To find such
localmaxima we use the "EM" algorithm [Dempster et
al.,1977] which isbased on the factthat at a maxima

the classparameters V_ can be estimated from weighted

sufficientstatistics.Relativelikelihoodweights

_<L(E,I_T<Sc)
wic = L(E_iVTSM)

give the probability that a particular case i is a member

of class c. These weights satisfy _"_c wic = 1, since every
case must really belong to one of the classes. Using these

weights we can break each case into _fxactional cases",
assign these to their respective classes, and create new
"class data" E c = Uit [xik, wlc] with new weighted-class
sufficient statistics obtained by using weighted sums

_'_4 wic instead of sums _"]_i" For example Ic = _i wlc,

_kc = _ _"_i wicz//_, II_...lxc = _'_4 wlc l'II_ 6=,,,1,,, and
tr I#

Azkc = Yii Azi/:'_. Substitutingthese statisticsinto

any previous class likelihood function L(E[VcTc So) gives
a weighted likelihood L' (E c [VcTc Sc ) and associated new
estimates and marginals.

At the maxima, the weights wic should be consistent
with estimates of V = {[_, Col} from £(VciERSM) =
E'(VciECSc) and £(aciERSM) = F2(Ic,I,C). To reach
a maxima we start out at a random seed and repeatedly
use our current best estimates of V to compute the wic,
and then use the wic to re-estimate the V, stopping when
they both predict each other. Typically this takes 10 -
100 iterations. This procedure will converge from any
starting point, but converges more slowly near the peak
than second-order methods.

Integrating the joint in R can't be done directly be-
cause the product of a sum in the full likelihood is hard
to decompose, but if we use fractional cases to approxi-



matethe likelihood

L(EilVTNSm)

c

=   cL(E,IV T Sc)
c

__ H (o_cL(E_IVcTcSc))'_'°
c

holding the wic fixed,we get an approximate joint:

M(ERTISM ) -_F3(C)C! FI({I_}, I,C) _I M'(ECTISc)
c

Our standard search procedure combines an explicit
search in C with a random search in all the other pa-
rameters. Each trial begins converging from classes built
around C random case pairs. The C is chosen randomly
from a log-normal distribution fit to the Cs of the 6 - 10
best trials seen so far, after trying a fixed range of Cs to
start. We also have developed alternative search proce-
dures which selectively merge and split classes according
to various heuristics. While these usually do better, they
sometimes do much worse.

The marginal joints of the different trials generally
follow a log-normal distribution, allowing us to estimate
during the search how much longer it will take on average
to find a better peak, and how much better it is likely
to be.

In the simpler model space SMX where Sc = Sz the
computation is order NICK, where C averages over the
search trials. N is the number of possible peaks, out
of the immense number usually present, that a compu-
tation actually examines. In the covariantspace SMV

where Sc = Sv this becomes NK-C(I-_b + K2b).

5.2 Class Hierarchy and Inheritance - S;_

The above class mixture model space SM can be gener-
alized to a hierarchical space SR by replacing the above
set of classes with a tree of classes. Leaves of the tree,

corresponding to the previous classes, can now inherit
specifications of class parameters from "higher" (closer
to the root) classes. For the purposes of the parameters
specified at a class, all of the classes below that class
pool their weight into one big class. Parameters associ-
ated with "irrelevant" attributes are specified indepen-

dently at the root. Figure 2 shows how a class tree, this
time with Sc = Sv, can better fit the same data as in

Figure 1. See [Hanson e_ al., 1991] for more about this
comparison.

The tree of classes has one root class r. Every other

class c has one parent class Pc, and every class has Jc
child classes given by Cci, where the index j ranges over
the children of a class. Each child class has a weight

X-_Jc Ol •acj relative to its siblings , with z_,j _ = 1, and an

absolute weight acoj - acjac, with ar - 1.
While other approaches to inheritance are possible,

here each class is given an associated set of attributes
/Co, which it predicts independently through a likeli-
hood L(E_(ICc)[V_TcSv) and which no class above or be-
low it predicts. To avoid having redundant trees which
describe the same likelihood function, only K:r can be
empty, and non-leaves must have Jc > 2.

We need to ensure that all attributes are predicted
somewhere at or above each leaf class. So we call .Ac

Figure 2: AutoClass IV Finds Class Tree × i0*z° Better

Listsof attributenumbers denote covaziantblockswithin

each class,and the ovalsnow indicatetheleafclasses.

the set of attributes which are predicted at or below
each class, start with .A, -- K, and then recursively par-
tition each .Ac into attributes K:c "kept" at that class,
and hence predicted directly by it, and the remaining

attributes to be predicted at or below each child .Ac_j.
For leaves fl-c -/Co.

Expressed in terms of the leaves the likelihood is again
a mixture:

c:Jc=O cl=c,Pc,Ppc,...,r

allowing the same EM procedure as before to find local

y_._° (withmaximas. The case weights here wci = j wc_j_

w_i = 1) sum like in the flat mixture case and define

class statistics E_(/C_) = UkeJco,i [Xik, wci].
We also choose a similar prior, though it must now

specify the K:c as well:

a,_(VTIS_, ) =

H d_r(Jc/Cc [Jt_S_)Jc! dB(Uv_cjlJc)dr(VcTc [ICcSc)
c j

-
= F (Jo- I)

forallsubsets/Co of.Ac ofsizeinthe range [1- 6or,Ac],

except that F3(Jc - 1)isreplaced by 60zowhen .Ac -/C_.
Note that thisprior isrecursive,as the prior for each

classdepends on the what attributeshave been chosen

foritsparent class.

This priorsays that each possiblenumber ofattributes

kept isequallylikely,and given the number to be kept

each particularcombination isequallylikely.This prior

prefers the simpler cases of/C_ = Ac and Kc = 1 and so
again offers a significance test. In comparing the hypoth-
esis that all attributes are kept at class with a hypothesis
that all but one particular attribute will be kept at that

class, this prior penalizes the all-but-one hypothesis in
proportion to the number of attributes that could have
been kept instead.

The marginal joint becomes

M(ERTISH )

H dr(JclC_ I .AcSH)Jc! FI(U Ic¢#, Ic, Jc)M'(E_(1C_)T_[Sc)
c j



and

estimates are again E(VcIERSH) = E'(Vc[EC(IC¢)Sc)

and £(_¢jlERSH ) = F2(Io, Ic, Jc).
In the general case of SHy, where Sc = Sv, computa-

tion again takes NK-C(I_ + K_), except that the J is
now also an average of, for each k, the number of classes
in the hierarchy which use that k (i.e., have k 6 Ec).
Since this is usually less than the number of leaves, the
model SH is typically cheaper to compute than SM for
the same number of leaves.

Searching in this most complex space SHy is challeng-
ing. There are a great many search dimensions where one
can trade off simplicity and fit to the data, and we have

only begun to explore possible heuristics. Blocks can be
merged or split, classes can be merged or split, blocks
can be promoted or demoted in the class tree, EM itera-
tions can be continued farther, and one can try a random
restart to seek a new peak. But even the simplest ap-
proaches to searching a more general model space seem
to do better than smarter searches of simpler spaces.

6 Conclusion

The Bayesian approach to unsupervised classification de-
scribes each class by a likelihood function with some free

parameters, and then adds in a few more parameters to
describe how those classes are combined. Prior expecta-
tions on those parameters VT combine with the evidence

E to produce a marginal joint M(ERTIS ) which is used
as an evaluation function for classifications in a region
R near some local maxima of the continuous parameters
V and with some choice of discrete model parameters T.
This evaluation function optimally trades off the com-
plexity of the model with its fit to the data, and is used
to guide an open-ended search for the best classification.

In this paper we have applied this theory to model
spaces of varying complexity in unsupervised classifica-
tion. For each space we provides a likelihood, prior,
marginal joint, and estimates. This should provide
enough information to allow anyone to reproduce Au-
toClass, or to use the same evaluation functions in other
contexts where these models might be relevant.
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version of AutoClass has been applied to many large real data sets, have discovered new independetly-verified
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